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Abstract In the present paper a numerical method based on fourth order finite difference and collocation 
method is presented for the numerical solution of partial integro-differential equation (PIDE). A composite 

weighted trapezoidal rule is manipulated to handle the numerical integrations which results in a closed-form 

difference scheme. The efficiency and accuracy of the scheme is validated by its application to one test problem 

which have exact solutions. Numerical results show that this fourth-order scheme has the expected accuracy. 

The most advantages of compact finite difference method for PIDE are that it obtains high order of accuracy, 
while the time complexity to solve the matrix equations after we use compact finite difference method on PIDE 

is O(N), and it can solve very general case of PIDE. 

 

Keywords: Compact finite difference method; PIDE; Partial integro-differential equations; High accuracy; 

Collocation method. 

 

1  Introduction 

Partial integro-differential equation is an equa-

tion that the unknown function appears under the 
sign of integration and contains the derivatives of 

the unknown function. It can be classified into 

Fredholm equations and Volterra equations. The 
upper bound of the region for integral part of Vol-

terra type is variable, while it is a fixed number for 

that of Fredholm type. In this paper we focus on 
Volterra integro-differential equation. The funda-

mental problems on linear second order partial dif-

ferential equations of parabolic type with different 
boundary conditions have been substantially inves-

tigated in [1-9] and others. Recently, Bange [10] 

and Pau [11] have reported certain results on the 
existence and uniqueness of solutions of quasilinear 

parabolic partial differential equations of second 

order. The problem of the existence and uniqueness 
of solution for systems governed by linear integro-

partial differential equations of parabolic has been 

considered in [12]. 
Consider the following initial boundary value 

problem for the one-dimensional partial integro-

differential equation with memory term, 
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Many authors have considered numerical methods 
for the solution of the linear problem of the form 

(1.1). Typically, the time discretization is affected 

by a combination of finite difference and quadra-
tures. Finite difference in time and finite elements 

in space have been discussed in the case of a 

smooth kernel (see e.g., Sloan & Thomèe, 1986; 
Cannon & Lin, 1988, 1990; Yanik & Fairweather, 

1988; Thomée & Zhang, 1989; Lin et al., 1991; 

Zhang, 1993). For the non-smooth kernel case we 
refer to Chen et al. (1992) and Larsson et al. (1998). 

Our contribution in this paper is to develop a 

new fourth-order accurate scheme for solving par-
tial integro-differential equations in one dimension-

al space with non-homogeneous Dirichlet boundary 

conditions. The suggested numerical sch starts with 
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the discretization in time by the 2-point Euler 

backward finite difference method. After that we 
deal with a combination of the compact finite dif-

ference method and the trapezoidal rule for calculat-

ing the integral term and then we use a collocation 
method to compute the unknown function and final-

ly the obtained system of algebraic equations is 

solved by iterative methods. The proposed tech-
nique is programmed using Matlab ver. 7.8.0.347 

(R2009a). 

The paper is organized as follows: In Section 2, 
we give a brief introduction to a high accurate com-

pact finite difference formula for ordinary differen-

tial equations and partial integro-differential equa-
tions with varying boundary conditions. In Section 

3, the proposed scheme is directly applicable to 

solve one numerical example to support the effi-
ciency of the suggested numerical scheme. Conclu-

sions are drawn in Section 4. 

 

2 Formulations of High-Order Compact 

Schemes 
 

Compact Schemes are based on a fourth-order 
accurate approximation to the derivative calculated 

from ordinary differential equation. To developed 

the scheme for one-dimensional uniform Cartesian 

grids with spacing hx  , let us introduce the fol-

lowing notations [13]: If )( jj xuu  , then we use 

notations 
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to denote the standard forward finite difference and 
backward finite difference schemes for first deriva-

tive. Also 
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is the first-order central finite difference with re-

spect to x. The standard second-order central finite 

difference is denoted as jxu
2  and is defined as 
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By using the Taylor’s series expansion, a fourth 

orders accurate finite difference for the first and 

second derivatives can be approximated by 
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2.1 Compact finite difference method for 

solving ordinary differential equations 
 

In this section, the fourth order compact finite 

difference method is used to obtain a numerical so-

lution to the following second order ordinary diffe-
rential equation 

,)()( bx,      axfxu               (2.1.1) 

,)()( 21  au , au             (2.1.2) 

where 1  and 2   are constant values. A fourth-

order accurate finite difference estimate for  xu   

is, 
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Noting that )( 2hO  term is included in equation 

(2.1.3), because we want to approximate it in order 

to construct an )( 4hO  scheme. Applying 
2
x  to 

ju  , we get 

).( 22)4(
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Substituting equation (2.1.4) into (2.1.3) yields 
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From (2.1.1) into (2.1.5) 
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Suppose that jw  is the discrete approximation to 

)( jxu , and using the above scheme we get  
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where 111 ,,,  jjjj wfff  are known and jw  

can be determined from equation (2.1.2), so we can 

calculate .1jw  

2.2  Compact finite difference method for 

solving partial integro-differential equations 

 
Here, we use the fourth order compact finite dif-

ference method to solve problem (1.1)-(1.3). To 

construct a numerical solution, we first consider the 

nodal points ),( ij tx  defined in the region 

],0[],[ Tba   where 
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and 
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In such a case we have jhax j   for 

,,,2,1,0 nj   and  iti  for .,2,1,0 i  

The initial condition in equation (1.2) is approx-
imated as follows: 
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Next, the 2-point Euler backward differentiation 

formula is manipulated to approximate ,tu  given in 
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rate finite difference estimate for  xu   is used 
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Then, a compact (implicit) approximation for  xu   

with fourth-order accuracy will be given as 
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Using this estimate and considering the discrete so-

lution of equation (2.2.4) which satisfies the ap-
proximation, we get 
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The latest integral will be handled numerically us-

ing the composite weighted trapezoidal rule given 
by: 
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Let )(xUi  be a function that approximates ),( itxu  

for the time-level , iti  and is a linear combina-

tion of n+1 shape functions which is expressed as: 
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Replacing 1U  by the approximate solution given by 

equation (2.2.12) yields the following linear system 
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The system (2.2.15) consists of )1( n  equation in 

the )1( n  unknowns 
n
mmc 01}{  . To get a solution 

of this system we need two additional conditions. 
These conditions are obtained from the boundary 

conditions (1.2) 
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nitgac
n

m

imm ,,0  ,)()(
0

11 


   (2.2.17) 

nitgbc
n

m

imm ,,0  ,)()(
0

21 


   (2.2.18) 

Since f and 0u  are known at every grid point, the 

right hand side of equation (2.2.15) is known for all 
nodes. The system (2.2.15), equations (2.2.17) and 

(2.2.18) consist of )1( n  equations in )1( n  un-

knowns; this system is of the form 

.FAC                      (2.2.19) 

Upon solving the system (2.2.19), the function 

)(1 xu  is approximated by the sum: 

.,,2,1,0),()( 1

0

1 njxcxu jmm

n

m

j  


  (2.2.20) 

Next, we find the approximate solution at time-

levels ,, 32 tt  recursively by solving the follow-

ing system for .,3,2 i  

 




n

m

jmjmjmim aaac
0

11211  

  






  jijiji uuu ,11,11,1

6

5

12

1
 

 


  1,1,1,01,0
6

5
)(

12

1
jijijj ffuu  







 




i

m

jmimijji utkuf
1

,,0, )(
6

5

6

5

12

1
 

 ,)(
12

1,1,

1







 jmijmi

i

m

mi uutk       (2.2.21) 

nitgac
n

m

imm ,,0  ,)()(
0

11 


     (2.2.22) 

nitgbc
n

m

imm ,,0  ,)()(
0

21 


    (2.2.23) 

 

3  Numerical Experiment 

In this section, we solve the integro-differential 

equation (1.1)-(1.3) in ),0()1,0( T  with 

))(sin(),(  ,),( 44

2

2

2

1



 tt eetxxtftstsk  

),sin(0 xu   and 0)()( 21  tgtg . The theoret-

ical solution of this problem is 

).sin(),(
2

xextu t  
 

We employ a compact difference scheme for the 

space derivative so that we get a full discretization 

scheme with error estimation ).(O)(O 4 h  We 

shall compare the results obtained by the suggested 
approximation scheme with the exact solution. 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

Behavior of numerical and exact at t=0.2 and time step= 0.00001 

Behavior of numerical and exact at t=0.2 and time step= 0.001 

Behavior of numerical and exact at t=0.6 and time step= 0.001 
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Figure (1), the behavior of numerical and exact so-

lution at different values of time. 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

Figure (2), the behavior of numerical and exact so-

lution at different values of time. 

 

 

 
Table 1. 

Comparison between exact and numerical solutions 

x 
t = 0.2, n = 10 

Exact 

solution 

Present method 

τ = 0.001 τ = 0.00001 
0.0 0 0 0 

0.1 4.2925E-002 4.2931E-002 4.2925E-002 

0.2 8.1649E-002 8.1659E-002 8.1649E-002 

0.3 1.1238E-001 1.1239E-001 1.1238E-001 

0.4 1.3211E-001 1.3212E-001 1.3211E-001 

0.5 1.3891E-001 1.3892E-001 1.3891E-001 

0.6 1.3211E-001 1.3212E-001 1.3211E-001 

0.7 1.1238E-001 1.1239E-001 1.1238E-001 

0.8 8.1649E-002 8.1659E-002 8.1649E-002 

0.9 4.2925E-002 4.2931E-002 4.2925E-002 

1.0 0 0 0 

 

Table 2. 
Comparison between exact and numerical solutions 

x 
t = 0.6, n = 20 

Exact  
solution 

Present method 

τ = 0.001 τ = 0.00001 
0.0 0 0 0 

0.1 8.2831E-004 8.3369E-004 8.2836E-004 

0.2 1.5755E-003 1.5857E-003 1.5756E-003 

0.3 2.1685E-003 2.1826E-003 2.1686E-003 

0.4 2.5492E-003 2.5658E-003 2.5494E-003 

0.5 2.6804E-003 2.6978E-003 2.6806E-003 

0.6 2.5492E-003 2.5658E-003 2.5494E-003 

0.7 2.1685E-003 2.1826E-003 2.1686E-003 

0.8 1.5755E-003 1.5857E-003 1.5756E-003 

0.9 8.2831E-004 8.3369E-004 8.2836E-004 

1.0 0 0 0 

 

Behavior of numerical and exact at t=0.6 and time step= 0.00001 

Behavior of numerical and exact at t=0.1 and time step= 0.001 

Behavior of numerical and exact at t=0.1 and time step= 0.0001 

Behavior of numerical and exact at t=0.8 and time step= 0.001 

Behavior of numerical and exact at t=0.8 and time step= 0.0001 
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Table 3. 

Comparison between exact and numerical solutions 

x 
t = 0.1, n = 20  

Exact 

solution 

Present method 

τ = 0.001 τ = 0.0001 
0.0 0 0 0 

0.1 1.1517E-001 1.1518E-001 1.1517E-001 

0.2 2.1907E-001 2.1908E-001 2.1907E-001 

0.3 3.0152E-001 3.0154E-001 3.0152E-001 

0.4 3.5446E-001 3.5448E-001 3.5446E-001 

0.5 3.7270E-001 3.7273E-001 3.7270E-001 

0.6 3.5446E-001 3.5448E-001 3.5446E-001 

0.7 3.0152E-001 3.0154E-001 3.0152E-001 

0.8 2.1907E-001 2.1908E-001 2.1907E-001 

0.9 1.1517E-001 1.1518E-001 1.1517E-001 

1.0 0 0 0 

 
Table 4. 

Comparison between exact and numerical solutions 

x 
t = 0.8, n = 20  

Exact  
solution 

Present method 

τ = 0.001 τ = 0.0001 
0.0 0 0 0 

0.1 1.1506E-004 1.2049E-004 1.1560E-004 

0.2 2.1886E-004 2.2919E-004 2.1990E-004 

0.3 3.0123E-004 3.1545E-004 3.0266E-004 

0.4 3.5412E-004 3.7084E-004 3.5580E-004 

0.5 3.7234E-004 3.8992E-004 3.7411E-004 

0.6 3.5412E-004 3.7084E-004 3.5580E-004 

0.7 3.0123E-004 3.1545E-004 3.0266E-004 

0.8 2.1886E-004 2.2919E-004 2.1990E-004 

0.9 1.1506E-004 1.2049E-004 1.1560E-004 

1.0 0 0 0 
 

4  Conclusions 

A fourth-order accurate compact finite differ-

ence scheme for partial integro-differential prob-
lems was developed. The method reduces the under-

lying problem to linear system of algebraic equa-

tions, which can be solved successively to obtain a 
numerical solution at varied time-levels. Numerical 

experiments which shown in the above scheme are 

good agreement with the exact ones. Moreover, the 
results in tables (1-4) and figures (1, 2) confirm that 

the numerical solutions can be refined when the 

time-step τ is reduced, or the number of nodes is 
increased. 
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