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Abstract In the present paper a numerical method based on fourth order finite difference and collocation
method is presented for the numerical solution of partial integro-differential equation (PIDE). A composite
weighted trapezoidal rule is manipulated to handle the numerical integrations which results in a closed-form
difference scheme. The efficiency and accuracy of the scheme is validated by its application to one test problem
which have exact solutions. Numerical results show that this fourth-order scheme has the expected accuracy.
The most advantages of compact finite difference method for PIDE are that it obtains high order of accuracy,
while the time complexity to solve the matrix equations after we use compact finite difference method on PIDE
is O(N), and it can solve very general case of PIDE.

Keywords: Compact finite difference method; PIDE; Partial integro-differential equations; High accuracy;

Collocation method.

1 Introduction

Partial integro-differential equation is an equa-
tion that the unknown function appears under the
sign of integration and contains the derivatives of
the unknown function. It can be classified into
Fredholm equations and Volterra equations. The
upper bound of the region for integral part of Vol-
terra type is variable, while it is a fixed number for
that of Fredholm type. In this paper we focus on
Volterra integro-differential equation. The funda-
mental problems on linear second order partial dif-
ferential equations of parabolic type with different
boundary conditions have been substantially inves-
tigated in [1-9] and others. Recently, Bange [10]
and Pau [11] have reported certain results on the
existence and uniqueness of solutions of quasilinear
parabolic partial differential equations of second
order. The problem of the existence and uniqueness
of solution for systems governed by linear integro-
partial differential equations of parabolic has been
considered in [12].

Consider the following initial boundary value
problem for the one-dimensional partial integro-
differential equation with memory term,

2
%“—Z%:j;k(t,s)u(x, Sds+ (6, (1.1)
xe[01],tel =[0,T],
u,_, =0, u _ =091, 120,  (1.2)
Ul_o=Up(x), as<x<b. (1.3)

Many authors have considered numerical methods
for the solution of the linear problem of the form
(1.1). Typically, the time discretization is affected
by a combination of finite difference and quadra-
tures. Finite difference in time and finite elements
in space have been discussed in the case of a
smooth kernel (see e.g., Sloan & Thomée, 1986;
Cannon & Lin, 1988, 1990; Yanik & Fairweather,
1988; Thomée & Zhang, 1989; Lin et al., 1991;
Zhang, 1993). For the non-smooth kernel case we
refer to Chen et al. (1992) and Larsson et al. (1998).

Our contribution in this paper is to develop a
new fourth-order accurate scheme for solving par-
tial integro-differential equations in one dimension-
al space with non-homogeneous Dirichlet boundary
conditions. The suggested numerical sch starts with
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the discretization in time by the 2-point Euler
backward finite difference method. After that we
deal with a combination of the compact finite dif-
ference method and the trapezoidal rule for calculat-
ing the integral term and then we use a collocation
method to compute the unknown function and final-
ly the obtained system of algebraic equations is
solved by iterative methods. The proposed tech-
nique is programmed using Matlab ver. 7.8.0.347
(R2009a).

The paper is organized as follows: In Section 2,
we give a brief introduction to a high accurate com-
pact finite difference formula for ordinary differen-
tial equations and partial integro-differential equa-
tions with varying boundary conditions. In Section
3, the proposed scheme is directly applicable to
solve one numerical example to support the effi-
ciency of the suggested numerical scheme. Conclu-
sions are drawn in Section 4.

2 Formulations of High-Order Compact
Schemes

Compact Schemes are based on a fourth-order
accurate approximation to the derivative calculated
from ordinary differential equation. To developed
the scheme for one-dimensional uniform Cartesian
grids with spacing Ax =h, let us introduce the fol-

lowing notations [13]: If u; =u(x;), then we use
notations

Uig—U;
8,uj =~ =8y
(2.1)
UJ—U
suj=—"t—Jt=5,
h

to denote the standard forward finite difference and
backward finite difference schemes for first deriva-
tive. Also
Ui s —U;

_1 ) A\ j+1 j-1
_2(8+UJ+8— UJ)_ oh

is the first-order central finite difference with re-
spect to x. The standard second-order central finite

difference is denoted as &2u ; and is defined as

m _Uj—2ujtujg 3, -8
+7="]) h2 h

By using the Taylor’s series expansion, a fourth

orders accurate finite difference for the first and
second derivatives can be approximated by

80 Uj (2.2)

. (23)

du h?d%

SoU=—+——
dx 3! gxd
2 2 2

(g D27 fdu M2 U Gty (24)
6 dx?2 dx 6 dx

and

2 2 44

8§u:d7u+h7d7u
dx® 12 dx*
2

:(1 h* d® ]d - (1+h 82J62u+0(h) (2.5)
12 dx? | dx? 12

2.1 Compact finite difference method for
solving ordinary differential equations

In this section, the fourth order compact finite
difference method is used to obtain a numerical so-
lution to the following second order ordinary diffe-
rential equation

u"(x)=f(x), a<x<b, (2.1.1)

u(a) =py, u'(a) =B, (2.1.2)
where B, and [, are constant values. A fourth-

order accurate finite difference estimate for u"(x)
is,
82u =Uj +h i
12
2
=[1+2—282j82u+0(h4) (2.1.3)

Noting that O(hz) term is included in equation
(2.1.3), because we want to approximate it in order

to construct an O(h4) scheme. Applying 6§ to
uj, we get

u§4) =8§ uj +0(h?). (2.1.4)
Substituting equation (2.1.4) into (2.1.3) yields

52, = U +2—2(82u”+0(h )J+o(h"). (215)
From (2.1.1) into (2.1.5)

Squ; = f; +22 8¢ fj+0(h*), (216)

Suppose that Wj is the discrete approximation to
u(x;), and using the above scheme we get
Wj+1_2Wj +Wj—1 =

%

—2 fj+1 +1OfJ + fj—l)’ (217)
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where f;_q, f;, fj,1, Wj_; are known and w;
can be determined from equation (2.1.2), so we can
calculate W;_ 1.

2.2 Compact finite difference method for
solving partial integro-differential equations

Here, we use the fourth order compact finite dif-
ference method to solve problem (1.1)-(1.3). To
construct a numerical solution, we first consider the

nodal points (X;,t;) defined in the region
[a, b] x[0, T] where

a=Xy <X <+ <X <Xy =Db, Xji1—Xj=h,
and

O=ty <ty <---<t;<---<T, tig-t=r1
In such a case we have x;=a+jh for
1=0,4,2,...,n,and t; =it for i=0,1,2,....

The initial condition in equation (1.2) is approx-
imated as follows:

u(x,0)=ug =u(x,ty), as<x<b. (2.2.1)
Next, the 2-point Euler backward differentiation
formula is manipulated to approximate U, given in

equation (1.1), at the time-level t;,,; for
i=0,1, 2,.... Therefore, we have
Ui (0 —Ui () dPu (%)
T dx?
ti+1
= jo ki (S)u(x, s)ds+ fi1(X),  (2.2.2)

where fiJrl(x) = f (X’ti+1)’ ki+1(s) = k(ti+1, )
and Uj,1(X) =u(X,t,4). Equivalently, we can re-
write equation (2.2.2) as

_ Ui () —ui(X)
(x) = .

14
Uiyt

tia
- 0 ki+l(S) U(X! S) ds — fi+1(X)!
n—1in(2.2.3), then

(2.2.3)
Putting X =Xj, j=1--,

" _ ML 1]
ui+l, j— f‘

ti+1
=, k() ulxj s)ds—fiy 5, (224)
where

Uiy j =U"(Xj, tig), Uisg, j =U(Xj, tia), Uy =u(Xj, §),

and  fi,q1 j = f(Xj,ti,q). The fourth order accu-

rate finite difference estimate for u”(x) is used
from (2.1.5) to give

h2
8 uI+:|.J = l"II+1J [Eafj( |+1J)+O(h )

(2.2.5)
Then, a compact (implicit) approximation for u”(x)

with fourth-order accuracy will be given as

2
. OxUiy

Ui, j =75 ~
1+h—82
12

Using this estimate and considering the discrete so-
lution of equation (2.2.4) which satisfies the ap-
proximation, we get

h2 2 i+1, j
~1o0 XL~

+0(h%).  (2.2.6)

t|+1
+, i (s)u(x;,s)ds+

h2 |1 2 Ulvj
+12 Ki1(s) dxu(X;, s) dSZ_T_
h? h2
12 82 fi+1, i~ Esi fi+1, j (2.2.7)
1 1 -2 5
|:F _E:|(ui+1,j+1 + ui+1,j—l)+ l:? _6_'[:|ui+l’j +
'lk|+1(5)u (5)d5+ '1k,+1(S)uJ+1(s)ds

|1 _1
k|+1(5)UJ (s)ds = T’C (Ui,j+1 + Ui,j_l) -

5 1

_aul (f|+1 J+1+ f|+1] 1) 12

12

I+lj

(2.2.8)
The latest integral will be handled numerically us-
ing the composite weighted trapezoidal rule given

by:
INCLE e 1)+ L) ()]

m=0

=1 V\/f(t0)+(1_w)f(ti+1)+zi:f(tm) :
m=1

(2.2.9)

Using (2.2.9) we get
[i* Kia(9)u(x 5) ds =

~ TWki+1(O)u0(X) + T(l_ W)ki+l(ti+1)ui+1(x) +
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i
+1D ki (tn)Uiam () (2210)
m=1
The substitutions of this equation into equation

(2.2.8) yields
1 1 -2 5

{F - E}(Um, j+1 HUigg j—1)Jr {F - E}UM, it
51

Y [Wki+1(0)u0,j + (L= Wki g (ti10)Uisg, J+

51 o
+ E Z ki+1(tm)ui+l—m,j

T
T WK1 (0)ug j1 +
m=1

12 |:(1 W)k|+1(t|+1)u|+1 j+l+ Zk|+1(tm)u|+l m j+1i|+
m=1

T
T [Wki+1(0)u0 jo1 + (@—=W)Ki g (1)U, j—1]+

-1
1 Zk|+l(tm)u|+l—m -1~ 21 ( i, j+l+ul j 1)

o 1
Suij

61 (f|+1 j+l+ f|+1 J—l)

Let U;(x) be a function that approximates u(X, t;)

for the time-level t; =i 1, and is a linear combina-
tion of n+1 shape functions which is expressed as:

Ui(x)= 2 Cni @m (),

m=0

(2.2.12)

where {C,i }n,_o are the unknown real coefficients,

to be evaluated, and the @, (x) are any knowing
basis functions

The approximate solutions u;(x) for different
time-levels are determined iteratively as follows.
Starting with the time-level ty =0, the value of

Ug(Xj), Up (Xji1), and U (Xj_g), for j=12,...
,n—1 are found from equation (1.2). Next, we will
approximate the solution u; 4 for i = 0 in equation

(2.2.8) by the shape functions U4, as is given in
equation (2.2.12). Hence equation (2.2.8) is approx-

imated by:

1 1 2 5
(h_z 120 )(U11+1+U11—1)+(? on )Ulj
5t
E[Wkl(o)uo,j + (L —=w)ky (t)Uy, ]+

Wy (O, + - Wk () 1 |+

= [wky (0 LWtV g]= ——2)
oW 1(0)Ug, j1 + A —W)kq (4)U1, 1 SRETY

J-2oi 5] ](2.2.13)

12 [Uo j+1 tUo, j—1 6t 6 fy it o

Replacing U, by the approximate solution given by
equation (2.2.12) yields the following linear system
of n—1 equations

l:h_lg_ﬁ}[zcml (I)m j+l+ Zcml (I)m 1—1]4'

-2 5 S5t(L—w)kq (t
+|:2_}Zcml Om j +M zcmld)m it
hc 61 6 for

m=0

T —w)kq (t 4 4
+%{ zcmld)m jH1t Zcmld)m j—l] =
m=0 m=0

-5 1 5
= ?|:'CWI(1(O) +_}U0,j —€<f1’ j+l + fl, j—l)_

ik, (0) fj
+—1|(Ug i1 +U :
{ 12 121 }( 0,j+1 ™ ¥0,j-1) 12
(2.2.14)

n n
where > Cri®m jo1= O Crn1®Pm(Xjs1), Rewrite
m=0 m=0

equation (2.1.17) as

Zcml[al(Pm jH1 T @20y j + 0P j—l]:

m=0
1
=aglp j+ay (uO‘jJr1+u0,j_1)_E f -
5
"Ei(fLi*1'+ f 1) (2.2.15)
where

1 1 T
= ———+—(L—w) Kkt
1= 7 T Tt Wk(®

-2 5 57t
Ay =—5 ——+—(L-w) Ky (t
2 h2 61 6( ) ke (t)

(2.2.16)
a =%5(rw k1(0)+%j

. [wk(©) 1
4 12 121

The system (2.2.15) consists of (n+1) equation in

the (n+1) unknowns {C;}m-o- TO get a solution

of this system we need two additional conditions.
These conditions are obtained from the boundary
conditions (1.2)
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D Cn®m(@) =0:(t), i=0,...,n (2.2.17)

m=0

D Cndm () =0,(t), i=0,...,n (2.2.18)

m=0
Since f and ugy are known at every grid point, the

right hand side of equation (2.2.15) is known for all
nodes. The system (2.2.15), equations (2.2.17) and
(2.2.18) consist of (n+1) equations in (n+1) un-

knowns; this system is of the form
AC =F. (2.2.19)
Upon solving the system (2.2.19), the function

Uy (X) is approximated by the sum:

U (Xj) =D Cradm(X;), J=012,...,n. (2.2.20)
m=0

Next, we find the approximate solution at time-
levels t,, t5, ... recursively by solving the follow-

ing system for i =2,3,....

n
Zcmi(ald)m jH1 Tt 0 it 30 j—l):

m=0
_ -1 ( ) 5
" 1ot Uiy, j+1 T Ui, j _aui—l,j -
5
B E(UO, j+1+Uo,j-1) "5 (fi, jut i, j—1)—
1 5 57 o
12 fi,j _auo,j _Emzzllki (tm)ui—m,j -
i
T
= i) Ui, o ~Uiom o) (2220)
12 =5
n -
D Cn®m(@ =0:(t), i=0,....n (2222
m=0
n -
> Cnidm®) = go(t;), i=0,...,n  (2.2.23)
m=0

3 Numerical Experiment

In this section, we solve the integro-differential
equation (1.1)-(1.3) in (0,1) x (0, T) with

k(s,t) =st, f(t,x):Sin(nx)(—ti_f‘_Lf‘Jr#)

i

Ug =sin(nx), and g;(t) = g,(t) =0. The theoret-
ical solution of this problem is
u(t,x) =e™™ tsin(nx).

We employ a compact difference scheme for the
space derivative so that we get a full discretization

scheme with error estimation O(h*)+O(t). We

shall compare the results obtained by the suggested
approximation scheme with the exact solution.

Behavior of numerical and exact at t=0.2 and time step= 0.00001

0.2

— vt
O Approx

01sf

01

nosf

L L L I L L L L L
IIUJ 0.1 02 03 0.4 05 06 o7 08 09 ﬁ]

Behavior of numerical and exact at t=0.2 and time step= 0.001

02

—  act
O Approx

018+

01r

Behavior of numerical and exact at t=0.6 and time step= 0.001

x10°
3

— v act
O Approx

28+

1 . 1 . . 1 1 1 1
D]—JJ 0.1 02 03 04 04 06 07 n.a n9 l”l:I
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Behavior of numerical and exact at t=0.6 and time step= 0.00001

%107
3 .

m—act

O Approx []

2481

I I I 1 I I ! I I
I:"—ElJ 01 02 03 0.4 05 06 07 0.s 0g I"l:I

Figure (1), the behavior of numerical and exact so-
lution at different values of time.

Behavior of numerical and exact at t=0.1 and time step= 0.001

04

— Eart

Behavior of numerical and exact at t=0.8 and time step= 0.0001

%10

4

— Eyact
O approx |

i

01 n2 03

04

05 0k

07

D.‘E EI.IQ I7|]

Figure (2), the behavior of numerical and exact so-
lution at different values of time.

0sl O agox ] Table 1.
Comparison between exact and numerical solutions
024
t=0.2,n=10
[IREY X
Exact Present method
01 02 03 0¢ 05 06 07 08 03 T solution 1=0.001 7 =0.00001
0.0 0 0 0
Behavior of numerical and exact at t=0.1 and time step= 0.0001 0.1 | 42925E-002 4.2931E-002 4.2925E-002
” . | 0.2 | 8.1649E-002 8.1659E-002  8.1649E-002
' c— 0.3 [ 1.1238E-001 1.1239E-001  1.1238E-001
03l O Approx 0.4 | 1.3211E-001 1.3212E-001  1.3211E-001
0.5 | 1.3891E-001 1.3892E-001  1.3891E-001
02} 1 0.6 | 1.3211E-001 1.3212E-001  1.3211E-001
0.7 | 1.1238E-001 1.1239E-001  1.1238E-001
01r 1 0.8 | 8.1649E-002 8.1659E-002  8.1649E-002
L 0.9 | 4.2925E-002 4.2931E-002  4.2925E-002
E(D‘ 01 0z 03 0.4 05 06 07 na 09 \7] 1.0 0 0 0
Behavior of numerical and exact at t=0.8 and time step= 0.001 Table 2.
. Comparison between exact and numerical solutions
w10
T R — t=0.6,n=20
xact
i O Approx X Exact Present method
al | solution t=0.001 t=0.00001
0.0 0 0 0
ik i 0.1] 8.2831E-004 8.3369E-004  8.2836E-004
0.2 ] 1.5755E-003 1.5857E-003  1.5756E-003
DD 0'1 ulz 0'3 ula u.'5 ula u'? D'E ulg HI] 0.3] 2.1685E-003 2.1826E-003 2.1686E-003
0.4 ] 2.5492E-003 2.5658E-003  2.5494E-003
0.5] 2.6804E-003 2.6978E-003 2.6806E-003
0.6 | 2.5492E-003 2.5658E-003  2.5494E-003
0.7] 2.1685E-003 2.1826E-003 2.1686E-003
0.8 ] 1.5755E-003 1.5857E-003  1.5756E-003
0.9 8.2831E-004 8.3369E-004  8.2836E-004
1.0 0 0 0
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Table 3.
Comparison between exact and numerical solutions
t=0.1,n=20
X Exact Present method
solution t=0.001 t=0.0001

0.0 0 0 0
0.1 | 1.1517E-001 1.1518E-001 1.1517E-001
0.2 | 2.1907E-001 2.1908E-001  2.1907E-001
0.3 | 3.0152E-001 3.0154E-001  3.0152E-001
0.4 | 3.5446E-001 3.5448E-001  3.5446E-001
0.5 | 3.7270E-001 3.7273E-001  3.7270E-001
0.6 | 3.5446E-001 3.5448E-001  3.5446E-001
0.7 | 3.0152E-001 3.0154E-001  3.0152E-001
0.8 | 2.1907E-001 2.1908E-001  2.1907E-001
0.9 | 1.1517E-001 1.1518E-001 1.1517E-001

1.0 0 0 0

Table 4.
Comparison between exact and numerical solutions
t=0.8,n=20

X Exact Present method
solution t=0.001 t=0.0001

0.0 0 0 0
0.1 ] 1.1506E-004 1.2049E-004  1.1560E-004
0.2 ] 2.1886E-004 2.2919E-004  2.1990E-004
0.3] 3.0123E-004 3.1545E-004 3.0266E-004
0.4 ] 3.5412E-004 3.7084E-004  3.5580E-004
0.5 3.7234E-004 3.8992E-004 3.7411E-004
0.6 | 3.5412E-004 3.7084E-004  3.5580E-004
0.7] 3.0123E-004 3.1545E-004 3.0266E-004
0.8 2.1886E-004 2.2919E-004  2.1990E-004
0.9] 1.1506E-004 1.2049E-004  1.1560E-004

1.0 0 0 0

4 Conclusions
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